Write the following cubes in expanded form : $(2 a-3 b)^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Using Identity $VI$ and Identity $VII,$ we have

$(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y),$ and $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$

$(2 a-3 b)^{3}=(2 a)^{3}-(3 b)^{3}-3(2 a)(3 b)[(2 a)-(3 b)]$

$=8 a ^{3}-27 b ^{3}-18 ab (2 a -3 b )$                           [Using Identity $VII$]

$=8 a^{3}-27 b^{3}-\left[36 a^{2} b-54 a b^{2}\right]=8 a^{3}-27 b^{3}-36 a^{2} b+54 a b^{2}$

Similar Questions

Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x)=x^{2}-1, \,x=1,\,-1$

Use suitable identities to find the products : $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$

Verify :  $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

If $x+y+z=0,$ show that $x^{3}+y^{3}+z^{3}=3 x y z$.

Find the value of the polynomial $5x -4x^2+ 3$ at $x = -\,1$.